15 research outputs found

    Prostate biopsies assisted by comanipulated probe-holder: first in man

    No full text
    International audiencePurpose: a comanipulator for assisting endorectal prostate biopsies is evaluated through a first-in man clinical trial. This lightweight system, based on conventional robotic components, possesses 6 degrees of freedom. It uses 3 electric motors and 3 brakes. It features a free mode, where its low friction and inertia allow for natural manipulation of the probe and a locked mode, exhibiting both a very low stiffness and a high steady state precision. Methods: Clinical trials focusing on the free mode and the locked mode of the robot are presented. The objective is to evaluate the practical usability and performance of the robot during clinical procedures. A research protocol for a prospective randomized clinical trial has been designed. Its specific goal is to compare the accuracy of biopsies performed with and without the assistance of the comanipulator. Results:The accuracy is compared between biopsies performed with and without the assistance of the comanipulator, across the 10 first patients included in the trial. Results show a statistically significant increase of the precision.. This work is partially funded french state funds managed by the ANR within the Investissements d'Avenir programme (Labex CAMI) under reference ANR-11-LABX-0004. 2 Marie-Aude Vitrani et al

    Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes

    Get PDF
    Most migrating cells extrude their front by the force of actin polymerization. Polymerization requires an initial nucleation step, which is mediated by factors establishing either parallel filaments in the case of filopodia or branched filaments that form the branched lamellipodial network. Branches are considered essential for regular cell motility and are initiated by the Arp2/3 complex, which in turn is activated by nucleation-promoting factors of the WASP and WAVE families. Here we employed rapid amoeboid crawling leukocytes and found that deletion of the WAVE complex eliminated actin branching and thus lamellipodia formation. The cells were left with parallel filaments at the leading edge, which translated, depending on the differentiation status of the cell, into a unipolar pointed cell shape or cells with multiple filopodia. Remarkably, unipolar cells migrated with increased speed and enormous directional persistence, while they were unable to turn towards chemotactic gradients. Cells with multiple filopodia retained chemotactic activity but their migration was progressively impaired with increasing geometrical complexity of the extracellular environment. These findings establish that diversified leading edge protrusions serve as explorative structures while they slow down actual locomotion

    A Handheld Master Device for 3D Remote Micro-Manipulation

    No full text
    International audienceMicro-assembly has always been a substantial issue for automation: micro-objects are difficult to grasp due to micro-world physical laws and a lack of adapted sensors. Therefore, many tasks are teleoperated using a nonintuitive device as joystick or button. This paper proposes a fresh remote handling solution to fill that need. A new 1-DOF master device which mimics a tweezers is brought to the fore: it is an instrumented haptic tweezers, handheld, allowing a high intuitiveness for the user. This master device, coupled with a tracking system, controls a micro-positioner and a micro-gripper. Different coupling strategies using position or speed variables are demonstrated

    Precisely positioning the tip of an instrument inserted through an orifice with a free wrist robot: application to prostate biopsies

    No full text
    International audiencePurpose Robots with a spherical unactuated wrist can be used for minimally invasive surgery. With such a robot, positioning the wrist center controls the instrument tip position when assuming that the insertion site behaves like a lever with a fixed and known fulcrum. In practice, this assumption is not always respected. In this paper we first study the practical consequences of this problem in terms of tip precision positioning. We then propose a robotic control scheme that improves the precision compared to the fixed point assumption approach. Methods In the first part of the paper, data recorded during robot-assisted transrectal needle positioning for prostate biopsies (nine patients) are exploited to quantify the positioning error induced by the use of a fixed point hypothesis in the positioning process. In the second part of the paper advanced control techniques allow for the online identification of a locally linear system that describes a model characterized by anisotropy and center displacement. A laboratory apparatus is used to demonstrate the resulting improvement on tip positioning precision. Results Errors obtained by processing the clinical data reach 7.5 mm at the tip in average. Errors obtained with the laboratory apparatus drop from 2.4 mm in average to 0.8 mm when using real-time model update
    corecore